Input/Output (I/O)

- Secondary storage
 - disks, tapes, CD ROMs
- Communication
 - networks
- ‘Real world’ interface
 - temperature, pressure, position, velocity, voltage, current,…
- Human interface
 - video, audio, keyboards, …
I/O Organization Today
Features of I/O Devices

- **Behavior**
 - Input, Output, Storage

- **“Partner”**
 - What’s on the other end - human or machine

- **Data Rate**
 - Peak transfer rate between machine and partner
 - Examples:
 - Keyboard: 0.01KB/sec
 - Laser Printer: 200KB/sec
 - Modem: 8KB/sec
 - Floppy disk: 100KB/sec
I/O Devices
Characterize by Latency, Bandwidth, Block Size

<table>
<thead>
<tr>
<th>Device</th>
<th>Latency</th>
<th>Peak BW</th>
<th>Avg BW</th>
<th>Xfer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>300s</td>
<td>1Mb/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>10ms</td>
<td>32Mb/s</td>
<td>32Kb/s</td>
<td>100B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16Mb/s</td>
<td>100KB</td>
</tr>
<tr>
<td>Network</td>
<td>0</td>
<td>100Mb/s</td>
<td>10Kb/s</td>
<td>1KB</td>
</tr>
<tr>
<td>CRT</td>
<td>16ms</td>
<td>1.5Gb/s</td>
<td>1.5Gb/s</td>
<td>3MB</td>
</tr>
<tr>
<td>Audio</td>
<td>200µs</td>
<td>100KB/s</td>
<td>100KB/s</td>
<td></td>
</tr>
</tbody>
</table>

peak BW >> avg BW ⇒ path sharing

high BW (CRT) requires specialized hardware

high latency devices can be handled by software

streaming devices have constant BW (CRT and audio)

disk can be I/O or bandwidth limited

devices may be block access or streaming
Magnetic Disk Drives

- <1” to 8” diameter
- up to 10000 RPM
- 1000s of tracks per surface
- 100s of sectors per track
- Today: 512 bytes per sector

Gigabytes per surface
Disk Access

- **Seek**
 - Move head over proper track
 - Depends on previous head placement
 - Typically 8-10ms

- **Rotational Delay**
 - Rotate sector under head
 - On average - must rotate 1/2 way

- Controller overhead
- Transfer rate
Magnetic Storage Technology

- Floppy disks - 1.44MB
- Zip disks - 100MB
- Removable “Hard” Disks - 1 GB capacity
- Hard disks - 200GB
 - Bigger, better density, higher data rate, more platters
- Tape
 - Archival, slower, high density (30+ GB)
Alternative I/O Architecture

Variables:
- Transfers by CPU or IOP (DMA)
- Notification by polling or interrupt
- Bandwidth of data paths
- Locations of buffers
- Division of function (moving to peripherals)
- Interface standard
- Protocol
A Typical Operation

A typical operation

- CPU asks IOP to perform disk sector read
- IOP schedules request
- IOP passes request to disk
- Disk reads data
- Disk transfers data to memory under IOP control (DMA)
- IOP notifies CPU that transfer is complete (interrupt)
Interrupts vs Polling

Interrupts reduce event handling latency and eliminate overhead of polling.

Are there cases where polling does better?
Programmed Transfer, DMA, and IOPs

- Consider loading a 1K disk block from a 4MB/s disk
 - 1μs between 32-bit words
 - 256 transfers
- CPU could perform all 256 transfers
 - poll to wait for each word ready
 - interrupt on each word
 - little time for anything else

- Direct-Memory Access (DMA)
 - CPU sets up start and length registers
 - DMA controller sequences the individual words
 - CPU notified (poll or interrupt) upon completion

- Input/Output Processor (IOP)
 - Queue multiple requests
 - IOP schedules the requests and sets up the individual DMA operations
 - CPU notified per request or when all are finished
Advanced Storage Systems

- Processors getting faster (performance doubling every 18 months)
- Disks also getting faster (seek time improves 7%/year)

- Instead of building one large disk.....
 - Build a disk array!
Reliability

- MTTF = Mean time to failure
 - On the order of 50,000 hours for a disk drive (= 5.7 years)

- MTTF for disk array = MTTF_{disk} / # disks
 - 500 hours for 100 disks (= 21 days!)

- Need to make data available at all times
 - Use redundancy!
RAID

- Redundant Array of Inexpensive Disks
 - Encode data redundantly
 - If a disk fails, the data is still available

- Mirrored Disks
- MTTF > 500 years
- Disk overhead = 100%
RAID-IV

- Share check disk across multiple data disks
 - Encode using parity
 - Writes require read from check disk

 - Parallel reads
 - MTTF > 40 years
 - Disk overhead = 25%
RAID-V

- Rotating parity
 - No single check disk
 - Multiple writes proceed simultaneously
Switches - Buses and Networks

- Switches used in several places in a typical computer
- I/O switch provides
 - standard interface to peripheral devices
 - data bandwidth to/from memory
 - must provide adequate bandwidth for fastest peripherals
 - must not burden slow peripherals
- Historically switches were implemented with buses. Point-to-point networks now more attractive
Bus Basics

- A special case of a communication network comprising
 - A single physical channel (bunch of wires) with multiple senders and receivers
 - A protocol obeyed by the senders and receivers

- Advantages
 - simplicity, broadcast, serialization

- Disadvantages
 - Multi-drop wires slow and electrically difficult
 - serialization
Bus Cycles and Transactions

- A bus cycle transfers one datum (address or data)
- A bus transaction completes an operation (read or write)
- An asynchronous bus signals each cycle when ready
 - can slow down to accommodate slow peripherals
- A synchronous bus performs a cycle every clock
- Lines on a bus can be dedicated or the lines can be multiplexed
Synchronous Transactions

● Shared synchronous clock
● Advantages
 – Easier to define protocols
● Disadvantages
 – Must have shared synchronous clock
 – Difficult to run devices at different speeds
● Synchronous typically used between processor and memory
Bus Bandwidth vs. Latency

- Increasing Bus Bandwidth
 - Make data bus wider
 - Separate address and data wires
 - Block Transfers
 - More buffering (pipelining)

- BUT - these can have adverse affect on bus latency
Bus Protocols

- Protocols determine
 - the transactions that are supported
 - the timing of their cycles
 - how modules are addressed
 - allocation of resources

- Arbitration
 - determines what module gets to use the bus
 - modules make requests
 - arbiter grants the bus to one requester
 - fixed priority
 - round robin
 - random

- Preemption
 - interrupt long transaction to run more critical operation

- Arbitration is often pipelined with bus use
Arbitration Policies

- **Daisy Chain**
 - High priority devices see grant lines first
- **Centralized**
 - One bus master sees all requests
- **Distributed Self Selection**
 - Each device sees all requestors, decide in parallel
- **Collision detection**
 - Ethernet

- **Issues**
 - Priority
 - Fairness (non-starvation)
Split Transaction Buses

- Separate request and reply transactions
- Decouples throughput of bus from latency of module
- Accommodates slow modules without tying up bus
- Requires method to identify responses
 - tags - allows responses in any order
 - in order response - can delay transactions behind slow responder

Bus idle during transaction latency

Bus handles other transactions while waiting
Bus Pipelining

- Typical latency from request to bus cycle may be 4 cycles or more
- Make request in advance
 - request bus 4 cycles before you will need it
 - if you know then
 - reduces latency due to bus arbitration
 - allows back-to-back bus cycles
Examples of Busses

<table>
<thead>
<tr>
<th></th>
<th>MicroChannel</th>
<th>PCI</th>
<th>SCSI 2</th>
<th>Sun P/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Width</td>
<td>32 bits</td>
<td>32-64 bits</td>
<td>8-16 bits</td>
<td>245 bits</td>
</tr>
<tr>
<td>Clock rate</td>
<td>Asynchronous</td>
<td>33MHz</td>
<td>10MHz or Asynch.</td>
<td>48MHz</td>
</tr>
<tr>
<td>Bus Masters</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Peak BW</td>
<td>75MB/s</td>
<td>132MB/s</td>
<td>20MB/s</td>
<td>1200Mb/s</td>
</tr>
</tbody>
</table>

- I/O Busses tend to have standards
 - Multiple vendors supply devices
- P/M busses tend to be proprietary
 - Faster speeds
Why Buses are a Bad Idea

- Electrically difficult
 - stubs and spaces, speed limited by size
- Limited scaling
 - load and delay grow with N
- Inherently sequential
 - throughput 1/N
- Arbitration slow - global
- Can’t exploit locality
Point-to-Point Network Basics

- Terminal
- Physical Channel (Link)
- Router
- Topology - how it's wired up
- Routing - how you get there from here
- Buffering - for data en route
- Resource allocation of links and buffers